FLIGHT SUMMARY REPORT

Flight Number: 97-126

Calendar/Julian Date: 25 June 1997 • 176

Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) Modis Airborne Simulator (MAS) Sensor Package:

Area(s) Covered: Railroad Valley (night flight)

Investigator(s): Wan, UCSB Aircraft #: 706

SENSOR DATA

Accession #:		
Sensor ID #:	099	108
Sensor Type:	AVIRIS	MAS
Focal Length:		
Film Type:		
Filtration:		
Spectral Band:		
f Stop:		
Shutter Speed:		
# of Frames:		
% Overlap:		
Quality:		

Remarks:

Airborne Science and Applications Program

The Airborne Science and Applications Program (ASAP) is supported by three ER-2 high altitude Earth Resources Survey aircraft. These aircraft are operated by the High Altitude Missions Branch at NASA-Ames Research Center, Moffett Field, California. The ER-2s are used as readily deployable high altitude sensor platforms to collect remote sensing and in situ data on earth resources, celestial phenomena, atmospheric dynamics, and oceanic processes. Additionally, these aircraft are used for electronic sensor research and development and satellite investigative support.

The ER-2s are flown from various deployment sites in support of scientific research sponsored by NASA and other federal, state, university, and industry investigators. Data are collected from deployment sites in Kansas, Texas, Virginia, Florida, and Alaska. Cooperative international scientific projects have deployed the aircraft to sites in Great Britain, Australia, Chile, and Norway.

Photographic and digital imaging sensors are flown aboard the ER-2s in support of research objectives defined by the sponsoring investigators. High resolution mapping cameras and digital multispectral imaging sensors are utilized in a variety of configurations in the ER-2s' four pressurized experiment compartments. The following provides a description of the digital multispectral sensor(s) and camera(s) used for data collection during this flight.

Airborne Visible and Infrared Imaging Spectrometer

The Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) is the second in the series of imaging spectrometer instruments developed at the Jet Propulsion Laboratory (JPL) for earth remote sensing. This instrument uses scanning optics and four spectrometers to image a 614 pixel swath simultaneously in 224 contiguous spectral bands (0.4-2.4 mm).

AVIRIS parameters are as follows:

IFOV: 1 mrad

Ground Resolution: 66 feet (20 meters) at 65,000 feet

Total Scan Angle: 30°

Swath Width: 5.7 nmi (10.6 km) at 65,000 feet

Spectral Coverage: 0.41-2.45 mm

Pixels/Scan Line: 614
Number of Spectral Bands: 224
Digitization: 10-bits
Data Rate: 17 MBPS

	Wavelength	Number of	Sampling
Spectrometer	Range	Bands	Interval
1	0.41 - 0.70 mm	31	9.4 nm
2	0.68 - 1.27 mm	63	9.4 nm
3	1.25 - 1.86 mm	63	9.7 nm
4	1.84 - 2.45 mm	63	9.7 nm

All AVIRIS data is decommutated and archived at JPL and not currently available for public distribution. For further information contact Rob Green at Jet Propulsion Laboratory, 4800 Oak Grove Drive, Mail Stop 183-501, Pasadena, California 91109-8099.

MODIS Airborne Simulator

The MODIS Airborne Simulator (MAS) is a modified Daedalus multispectral scanner configured to replicate the capabilities of the Moderate-Resolution Imaging Spectrometer (MODIS), an instrument to be orbited on an EOS platform. MODIS is designed for the measurement of biological and physical processes and atmospheric temperature sounding. The MODIS Airborne Simulator records fifty 16-bit channels of multispectral data and is configured as follows:

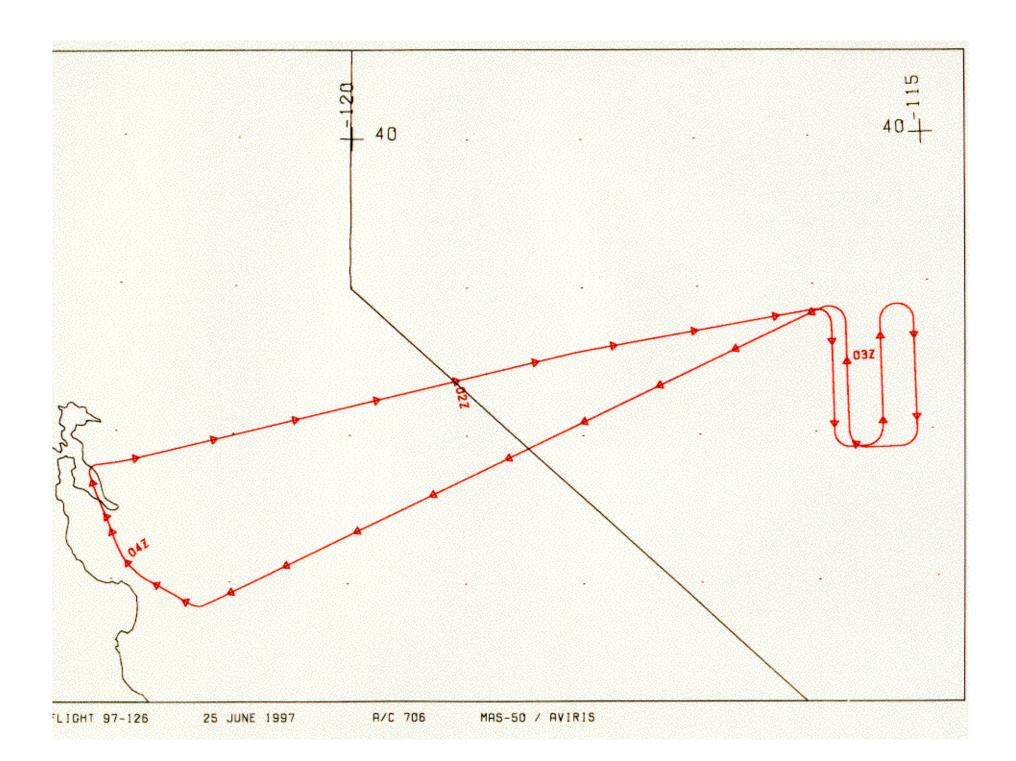
<u> </u>		I	
Spectral		Bandwidth	Spectral
Channel	(µm)	(µm)	Range
1	0.4649	0.0397	0.4451-0.4848
2	0.5494	0.0417	0.5285-0.5703
3	0.6550	0.0511	0.6294-0.6805
4	0.7024	0.0415	0.6816-0.7231
5	0.7431	0.0420	0.7221-0.7641
6	0.8248	0.0427	0.8034-0.8461
7	0.8667	0.0414	0.8460-0.8874
8	0.9072	0.0409	0.8867-0.9276
9	0.9476	0.0397	0.9277-0.9674
10	1.6422	0.0519	1.6163-1.6682
11	1.6975	0.0505	1.6722-1.7228
12	1.7499	0.0506	1.7245-1.7752
13	1.8014	0.0491	1.7768-1.8259
14	1.8548	0.0489	1.8303-1.8792
15	1.9044	0.0487	1.8801-1.9288
16	1.9553	0.0483	1.9312-1.9794
17	2.0048	0.0487	1.9804-2.0291
18	2.0551	0.0484	2.0309-2.0793
19	2.1037	0.0486	2.0794-2.1280
20	2.1532	0.0483	2.1291-2.1774
21	2.2019	0.0481	2.1779-2.2259
22	2.2522	0.0486	2.2278-2.2675
23	2.3021	0.0487	2.2777-2.3265
24	2.3512	0.0476	2.3274-2.3750
25	2.4005	0.0483	2.3764-2.4246

Spectral	Band center	Bandwidth	Spectral
Channel	(µm)	(µm)	Range
26	3.1192	0.1616	3.0384-3.2000
27	3.2809	0.1486	3.2066-3.3552
28	3.4330	0.1617	3.3521-3.5138
29	3.5940	0.1539	3.5170-3.6709
30	3.7449	0.1449	3.6724-3.8174
31	3.9069	0.1602	3.8267-3.9870
32	4.0707	0.1554	3.9929-4.1484
33	4.1699	0.0669	4.1365-4.2034
34	4.4029	0.1255	4.3401-4.4656
35	4.5404	0.1512	4.4648-4.6160
36	4.6979	0.1591	4.6184-4.7775
37	4.8536	0.1516	4.7778-4.9294
38	5.0033	0.1468	4.9298-5.0767
39	5.1588	0.1400	5.0888-5.2288
40	5.3075	0.1327	5.2412-5.3738
41	5.3977	0.0755	5.3590-5.4365
42	8.5366	0.3950	8.3391-8.7341
43	9.7224	0.5365	9.4541-9.9906
44	10.5071	0.4579	10.278-10.736
45	11.0119	0.4710	10.776-11.247
46	11.9863	0.4196	11.776-12.196
47	12.9013	0.3763	12.713-13.089
48	13.2702	0.4584	13.041-13.500
49	13.8075	0.5347	13.540-14.075
50	14.2395	0.3775	14.051-14.428

NOTE: Bandpass centers approximate

Sensor/Aircraft Parameters:

Spectral Bands: 50 (digitized to 16-bit resolution)


IFOV: 2.5 mrad

Ground Resolution: 163 feet (50 meter at 65,000 feet) Swath Width: 22.9 mi/19.9 nmi (36 km)

Total Scan Angle: 85.92° Pixels/Scan Line: 716

Scan Rate: 6.25 scans/second Ground Speed: 400 kts (206 m/second)

Roll Correction: Plus or minus 3.5 degrees (approx.)

